Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
3.
Igaku Butsuri ; 42(1): 7-16, 2022.
Article in Japanese | MEDLINE | ID: mdl-35354741

ABSTRACT

The purpose of this article is to introduce fundamental studies on improvement of count rate performance of scintillation detectors which Dr. Eiichi Tanaka dedicated himself to carrying out. He proposed a new technique based on the combination of pulse shortening and selective integration in which the integration period is not fixed but shortened by the arrival of the following pulse. Theoretical analysis of the degradation of the statistical component of resolution is made for the proposed system with delay line pulse shortening, and the factor of resolution loss is formulated as a function of the input pulse rate. A new method is also presented for determining the statistical component of resolution separately from the non-statistical system resolution. Preliminary experiments with a NaI (Tl) detector had been carried out, the results of which are consistent with the theoretical prediction. The related works are also introduced.

5.
Radiol Phys Technol ; 8(1): 111-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25348721

ABSTRACT

Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/instrumentation , Equipment Design , Gamma Rays , Humans , Image Processing, Computer-Assisted , Lutetium/chemistry , Photons , Signal-To-Noise Ratio , Silicates/chemistry
7.
Radiol Phys Technol ; 7(2): 329-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24879065

ABSTRACT

We are developing a new PET scanner based on the "OpenPET" geometry, which consists of two detector rings separated by a gap. One item to which attention must be paid is that OpenPET image reconstruction is classified into an incomplete inverse problem, where low-frequency components are truncated. In our previous simulations and experiments, however, the OpenPET imaging was made feasible by application of iterative image reconstruction methods. Therefore, we expect that iterative methods have a restorative effect to compensate for the lost frequency. There are two types of reconstruction methods for improving image quality when data truncation exists: one is the iterative methods such as the maximum-likelihood expectation maximization (ML-EM) and the other is an analytical image reconstruction method followed by the method of convex projections, which has not been employed for the OpenPET. In this study, therefore, we propose a method for applying the latter approach to the OpenPET image reconstruction and compare it with the ML-EM. We found that the proposed analytical method could reduce the occurrence of image artifacts caused by the lost frequency. A similar tendency for this restoration effect was observed in ML-EM image reconstruction where no additional restoration method was applied. Therefore, we concluded that the method of convex projections and the ML-EM had a similar restoration effect to compensate for the lost frequency.


Subject(s)
Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Likelihood Functions
8.
Radiol Phys Technol ; 7(2): 379-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24938490

ABSTRACT

In the development of depth-of-interaction (DOI)-positron emission tomography (PET) detectors, one of the important steps toward their practical use is an evaluation of their imaging performance, such as the spatial resolution as measured by use of a point source and a one-pair experimental system which simulates actual PET geometries. The DOI-PET detectors have a broad field of view providing good imaging performance compared with conventional detectors. Therefore, evaluation including the region from the center to the periphery close to the detector ring is required in an effort to show their advanced performance regarding uniform spatial resolution. In this study, we aimed to develop and evaluate an efficient one-pair experimental system for demonstration of the DOI-PET detector performance. For this purpose, we propose a one-pair experimental system that can simulate an arbitrary ring diameter and acquire projection data efficiently by skipping unnecessary combinations according to the position of the point source. As a result, the proposed system and our measuring scheme could significantly reduce the total measurement time, especially for a large ring size such as that used in brain PET scanners and whole-body PET scanners. We used the system to evaluate the X'tal cube PET detector with a 2-mm cubic crystal array arranged in simulated PET geometries with ring diameters of 8.2 and 14.6 cm for 12 and 18 detector blocks, respectively. The results showed that a uniform spatial resolution was achieved even in the peripheral region, and measurements were obtained semi-automatically in a short time.


Subject(s)
Positron-Emission Tomography/instrumentation , Equipment Design , Image Processing, Computer-Assisted , Time Factors
9.
Phys Med Biol ; 59(7): 1623-40, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24614643

ABSTRACT

In-beam positron emission tomography (PET) can enable visualization of an irradiated field using positron emitters (ß+ decay). In particle therapies, many kinds of secondary particles are produced by nuclear interactions, which affect PET imaging. Our purpose in this work was to evaluate effects of secondary particles on in-beam PET imaging using the Monte Carlo simulation code, Geant4, by reproducing an experiment with a small OpenPET prototype in which a PMMA phantom was irradiated by a (11)C beam. The number of incident particles to the detectors and their spectra, background coincidence for the PET scan, and reconstructed images were evaluated for three periods, spill-time (beam irradiation), pause-time (accelerating the particles) and beam-off time (duration after the final spill). For spill-time, we tested a background reduction technique in which coincidence events correlated with the accelerator radiofrequency were discarded (RF gated) that has been proposed in the literature. Also, background generation processes were identified. For spill-time, most background coincidences were caused by prompt gamma rays, and only 1.4% of the total coincidences generated ß+ signals. Differently, for pause-time and beam-off time, more than 75% of the total coincidence events were signals. Using these coincidence events, we failed to reconstruct images during the spill-time, but we obtained successful reconstructions for the pause-time and beam-off time, which was consistent with the experimental results. From the simulation, we found that the absence of materials in the beam line and using the RF gated technique improved the signal-to-noise ratio for the spill-time. From an additional simulation with range shifter-less irradiation and the RF gated technique, we showed the feasibility of image reconstruction during the spill-time.


Subject(s)
Monte Carlo Method , Positron-Emission Tomography/instrumentation , Carbon Radioisotopes , Image Processing, Computer-Assisted , Radiometry , Signal-To-Noise Ratio
10.
Radiol Phys Technol ; 7(2): 235-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24496884

ABSTRACT

For clinical studies, the effects of the intrinsic radioactivity of lutetium-based scintillators such as LSO used in PET imaging can be ignored within a narrow energy window. However, the intrinsic radioactivity becomes problematic when used in low-count-rate situations such as gene expression imaging or in-beam PET imaging. Time-of-flight (TOF) measurement capability promises not only to improve PET image quality, but also to reduce intrinsic random coincidences. On the other hand, we have developed a new reduction method for intrinsic random coincidence events based on multiple-coincidence information. Without the energy window, an intrinsic random coincidence is detected simultaneously with an intrinsic true coincidence as a multiple coincidence. The multiple-coincidence events can serve as a guide to identification of the intrinsic coincidences. After rejection of multiple-coincidence events detected with a wide energy window, data obtained included a few intrinsic random and many intrinsic true coincidence events. We analyzed the effect of intrinsic radioactivity and used Monte Carlo simulation to test both the TOF-based method and the developed multiple-coincidence-based (MC-based) method for a whole-body LSO-PET scanner. Using the TOF- and MC-based reduction methods separately, we could reduce the intrinsic random coincidence rates by 77 and 30 %, respectively. Also, the intrinsic random coincidence rate could be reduced by 84 % when the TOF+MC reduction methods were applied. The developed MC-based method showed reduced number of the intrinsic random coincidence events, but the reduction performance was limited compared to that of the TOF-based reduction method.


Subject(s)
Image Processing, Computer-Assisted/methods , Lutetium , Monte Carlo Method , Positron-Emission Tomography , Radioisotopes
12.
Radiol Phys Technol ; 7(1): 43-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23928910

ABSTRACT

We are developing a novel PET detector with 3D isotropic resolution called a crystal (X'tal) cube. The X'tal cube detector consists of a crystal block all 6 surfaces of which are covered with silicon photomultipliers (SiPMs). We have developed a prototype detector with 3D isotropic 1 mm resolution. On the other hand, when the X'tal cubes are arranged to form a PET scanner, insensitive inter-detector gaps made by the SiPM arrays should not be too wide, or, better yet, they should be removed. Reduction of the number of SiPMs will also be reflected in the production costs. Therefore, reducing the number of faces to be connected to the SiPMs has become our top priority. In this study, we evaluated the effect of reducing the number of SiPMs on the positioning accuracy through numerical simulations. Simulations were performed with the X'tal cube, which was composed of a 6 × 6 × 6 array of Lu2x Gd2(1-x)SiO5:Ce crystal elements with dimensions of (3.0 mm)(3). Each surface of the crystal block was covered with a 4 × 4 array of SiPMs, each of which had a (3.0 mm)(2) active area. For material between crystal elements, we compared two: optical glue and an air gap. The air gap showed a better crystal identification performance than did the optical glue, although a good crystal identification performance was obtained even with optical glue for the 6-face photodetection. In conclusion, the number of photodetection faces could be reduced to two when the gap material was air.


Subject(s)
Computer Simulation , Positron-Emission Tomography/instrumentation , Crystallization , Equipment Design , Imaging, Three-Dimensional , Lasers , Light , Models, Theoretical , Optics and Photonics , Photons , Refractometry , Reproducibility of Results , Silicon/chemistry , Temperature
13.
Radiol Phys Technol ; 7(1): 35-42, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23896989

ABSTRACT

The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.


Subject(s)
Lasers , Positron-Emission Tomography/instrumentation , Scintillation Counting/instrumentation , Algorithms , Computer Graphics , Computer Simulation , Crystallization , Equipment Design , Imaging, Three-Dimensional , Monte Carlo Method , Optics and Photonics , Photons , Reproducibility of Results , Silicon , User-Computer Interface
14.
Radiol Phys Technol ; 7(1): 57-66, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23963892

ABSTRACT

Our purpose in this work was to evaluate the performance of a 4-layer depth-of-interaction (DOI) detector composed of GSO crystals by use of a position-sensitive photomultiplier tube (PMT) with a super-bialkali photocathode (SBA) by comparing it with a standard bialkali photocathode (BA) regarding the ability to identify the scintillating crystals, energy resolution, and timing resolution. The 4-layer DOI detector was composed of a 16 × 16 array of 2.9 × 2.9 × 7.5 mm(3) GSO crystals for each layer and an 8 × 8 multi-anode array type position-sensitive PMT. The DOI was achieved by a reflector control method, and the Anger method was used for calculating interacting points. The energy resolution in full width at half-maximum (FWHM) at 511 keV energy for the top layer (the farthest from the PMT) was improved and was 12.0% for the SBA compared with the energy resolution of 12.7% for the BA. As indicators of crystal identification ability, the peak-to-valley ratio and distance-to-width ratio were calculated; the latter was defined as the average of the distance between peaks per the average of the peak width. For both metrics, improvement of several percent was obtained; for example, the peak-to-valley ratio was increased from 1.78 (BA) to 1.86 (SBA), and the distance-to-width ratio was increased from 1.47 (BA) to 1.57 (SBA). The timing resolution (FWHM) in the bottom layer was improved slightly and was 2.4 ns (SBA) compared with 2.5 ns (BA). Better performance of the DOI detector is expected by use of a super bialkali photocathode.


Subject(s)
Positron-Emission Tomography/instrumentation , Scintillation Counting/instrumentation , Barium Compounds/chemistry , Crystallization , Electrodes , Equipment Design , Fluorides/chemistry , Imaging, Three-Dimensional , Light , Reproducibility of Results
15.
Phys Med Biol ; 58(5): 1361-74, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23391640

ABSTRACT

We are developing a three-dimensional (3D) position-sensitive detector with isotropic spatial resolution, the X'tal cube. Originally, our design consisted of a crystal block for which all six surfaces were covered with arrays of multi-pixel photon counters (MPPCs). In this paper, we examined the feasibility of reducing the number of surfaces on which a MPPC array must be connected with the aim of reducing the complexity of the system. We evaluated two kinds of laser-processed X'tal cubes of 3 mm and 2 mm pitch segments while varying the numbers of the 4 × 4 MPPC arrays down to two surfaces. The sub-surface laser engraving technique was used to fabricate 3D grids into a monolithic crystal block. The 3D flood histograms were obtained by the Anger-type calculation. Two figures of merit, peak-to-valley ratios and distance-to-width ratios, were used to evaluate crystal identification performance. Clear separation was obtained even in the 2-surface configuration for the 3 mm X'tal cube, and the average peak-to-valley ratios and the distance-to-width ratios were 6.7 and 2.6, respectively. Meanwhile, in the 2 mm X'tal cube, the 6-surface configuration could separate all crystals and even the 2-surface case could also, but the flood histograms were relatively shrunk in the 2-surface case, especially on planes parallel to the sensitive surfaces. However, the minimum peak-to-valley ratio did not fall below 3.9. We concluded that reducing the numbers of MPPC readout surfaces was feasible for both the 3 mm and the 2 mm X'tal cubes.


Subject(s)
Lasers , Positron-Emission Tomography/instrumentation , Feasibility Studies , Imaging, Three-Dimensional , Scintillation Counting/instrumentation , Surface Properties
16.
Ann Nucl Med ; 27(4): 346-54, 2013 May.
Article in English | MEDLINE | ID: mdl-23381938

ABSTRACT

OBJECTIVE: To improve the reliability and convenience of the calibration procedure of positron emission tomography (PET) scanners, we have been developing a novel calibration path based on traceable point-like sources. When using (22)Na sources, special care should be taken to avoid the effects of 1.275-MeV γ rays accompanying ß (+) decays. The purpose of this study is to validate this new calibration scheme with traceable point-like (22)Na sources on various types of PET scanners. METHOD: Traceable point-like (22)Na sources with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons were used. The tested PET scanners included a clinical whole-body PET scanner, four types of clinical PET/CT scanners from different manufacturers, and a small-animal PET scanner. The region of interest (ROI) diameter dependence of ROI values was represented with a fitting function, which was assumed to consist of a recovery part due to spatial resolution and a quadratic background part originating from the scattered γ rays. RESULTS: The observed ROI radius dependence was well represented with the assumed fitting function (R (2) > 0.994). The calibration factors determined using the point-like sources were consistent with those by the standard cross-calibration method within an uncertainty of ±4 %, which was reasonable considering the uncertainty in the standard cross-calibration method. CONCLUSION: This novel calibration scheme based on the use of traceable (22)Na point-like sources was successfully validated for six types of commercial PET scanners.


Subject(s)
Algorithms , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/standards , Sodium Radioisotopes/analysis , Sodium Radioisotopes/standards , Calibration , Equipment Design , Equipment Failure Analysis , Japan , Reproducibility of Results , Sensitivity and Specificity
17.
Radiol Phys Technol ; 6(1): 21-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22782296

ABSTRACT

The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Lasers , Positron-Emission Tomography/instrumentation , Photons , Surface Properties
18.
Radiol Phys Technol ; 5(1): 92-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22124931

ABSTRACT

We have proposed an OpenPET geometry which consists of two axially separated detector rings. The open gap is suitable for in-beam PET. We have developed the small prototype of the OpenPET especially for a proof of concept of in-beam imaging. This paper presents an overview of the main features implemented in this prototype. We also evaluated the detector performance. This prototype was designed with 2 detector rings having 8 depth-of-interaction detectors. Each detector consisted of 784 Lu(2x)Gd(2(1-x))SiO5:Ce (LGSO) which were arranged in a 4-layer design, coupled to a position-sensitive photomultiplier tube (PS-PMT). The size of the LGSO array was smaller than the sensitive area of the PS-PMT, so that we could obtain sufficient LGSO identification. Peripheral LGSOs near the open gap directly detect the gamma rays on the side face in the OpenPET geometry. Output signals of two detectors stacked axially were projected onto one 2-dimensional position histogram for reduction of the scale of a coincidence processor. Front-end circuits were separated from the detector head by 1.2-m coaxial cables for the protection of electronic circuits from radiation damage. The detectors had sufficient crystal identification capability. Cross talk between the combined two detectors could be ignored. The timing and energy resolutions were 3.0 ns and 14%, respectively. The coincidence window was set 20 ns, because the timing histogram showed that not only the main peak, but also two small shifted peaks were caused by the coaxial cable. However, the detector offers the promise of sufficient performance, because random coincidences are at a nearly undetectable level for in-beam PET experiments.


Subject(s)
Positron-Emission Tomography/instrumentation , Equipment Design , Light
19.
Phys Med Biol ; 56(21): 6793-807, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21971079

ABSTRACT

We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Photons , Positron-Emission Tomography/instrumentation , Silicates/chemistry , Algorithms , Computer Simulation , Crystallization , Equipment Design , Imaging, Three-Dimensional/methods , Light , Lutetium/chemistry , Monte Carlo Method , Positron-Emission Tomography/methods , Sensitivity and Specificity
20.
Phys Med Biol ; 56(18): 6031-45, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21865623

ABSTRACT

The uncertainty of radioactivity concentrations measured with positron emission tomography (PET) scanners ultimately depends on the uncertainty of the calibration factors. A new practical calibration scheme using point-like (22)Na radioactive sources has been developed. The purpose of this study is to theoretically investigate the effects of the associated 1.275 MeV γ rays on the calibration factors. The physical processes affecting the coincidence data were categorized in order to derive approximate semi-quantitative formulae. Assuming the design parameters of some typical commercial PET scanners, the effects of the γ rays as relative deviations in the calibration factors were evaluated by semi-quantitative formulae and a Monte Carlo simulation. The relative deviations in the calibration factors were less than 4%, depending on the details of the PET scanners. The event losses due to rejecting multiple coincidence events of scattered γ rays had the strongest effect. The results from the semi-quantitative formulae and the Monte Carlo simulation were consistent and were useful in understanding the underlying mechanisms. The deviations are considered small enough to correct on the basis of precise Monte Carlo simulation. This study thus offers an important theoretical basis for the validity of the calibration method using point-like (22)Na radioactive sources.


Subject(s)
Gamma Rays , Positron-Emission Tomography/methods , Sodium Isotopes , Animals , Calibration , Computer Simulation , Humans , Monte Carlo Method , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/standards , Scattering, Radiation , Sensitivity and Specificity , Sodium Isotopes/chemistry , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...